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LE'lTER TO THE EDITOR 

Elastic properties of diffusion-limited aggregates 

Yacov Kantor and David J Bergmant 
Corporate Research Science Laboratories, Exxon Research and Engineering CO, Route 22 
East, Annandale, New Jersey 08801, USA 

Received 16 July 1985 

Abstract. A transfer matrix method has been used to investigate the power law dependence 
of the effective elastic moduli of a two-dimensional diffusion-limited aggregate on the size 
I of the aggregate. Scaling exponents have been found to depend on the type of applied 
deformation. For stretching along the direction of growth the elastic modulus scales as 

, while for deformations in the direction perpendicular to the direction of growth 1 - 2  2+0 2 

it is proportional to / -2.8*o.2.  

Considerable recent attention has been focused on various properties of diffusion- 
limited aggregates (DLA) (Witten and Sander 1981, 1983), which provide an adequate 
description of several physical systems (Brady and Ball 1984, Matsushita et a1 1984, 
Nittman et a1 1985, Elam et a1 1985). In a standard DLA model a seed aggregate is 
placed at a lattice site and diffusing particles stick to it and join the aggregate if they 
visit a neighbouring site to the aggregate. The simplicity and convenience of the model 
lead to numerous investigations of its physical properties, such as conductivity (Family 
and Coniglio 1984), mechanical stability (Kantor and Witten 1984), spectral properties 
(Webman and Grest 1985) and some topological properties (Witten and Kantor 1984, 
Meakin et a1 1984). In this letter we report the results of a numerical investigation of 
the elastic properties of a two-dimensional DLA. Since DLA is a fractal (Mandelbrot 
1982) or scale invariant object, its elastic properties have a power law dependence on 
the linear size 1, namely each elastic modulus is proportional to I-'. We find that the 
numerical value of the critical exponent 7" depends on the direction of the applied 
external deformation. For forces which stretch the object along its growth direction 
7" = 2.2 f 0.2, while for forces perpendicular to that direction i = 2.8 * 0.2. This 
difference in the numerical values of i reflects the strong anisotropy in the geometry 

We use a transfer matrix method (Derrida and Vannimenus 1982) which has been 
modified by Bergman (1985) to permit the calculation of the effective elastic constants 
in disordered systems. This method uses an iterative procedure to calculate exactly 
the elastic response of a system which is defined on a strip of a very large length L 
and finite width 1. The choice of L >> 1 produces an effective averaging of the large 
fluctuations, which are usually present in small I x I systems, and therefore leads to a 
highly accurate estimate of the effective elastic constants for each value of 1. By shifting 
one of the long edges of the strip either parallel or perpendicular to the long dimension 

O f  DLA. 
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of the strip, and by measuring the elastic response (force) we determine the effective 
values of either the shear modulus p 3 C1212 or the ‘stretching modulus’ c C2222 (the 
strip is assumed to be parallel to the x axis of the reference frame). The efficiency 
and accuracy of this method has been demonstrated (Bergman 1985) in the measurement 
of the critical behaviour of p and c of a percolating network. 

Transfer matrix methods can be applied only to systems whose characteristics do 
not depend (on the average) on the x coordinate. This, however, is not the case for a 
regular DLA which is grown from a point seed, since its density decreases with increasing 
distance from the seed. (From this point of view DLA is more analogous to the infinite 
cluster of a percolating network at the percolation threshold, viewed from a point 
which lies on it, than to the entire percolating network, viewed from an arbitrary point.) 
Therefore, we use a different model, in which a point seed is replaced by a straight 
line of such seeds. This model has been proposed and investigated by Meakin (1983b) 
and Ricz and Vicsec (1983). The mass M of such an aggregate scales with the distance 
h from the surface according to the power law M -hD1. This model can be related 
to the usual DLA. If we assume that the two-point correlation function of a regular 
DLA (in d dimensions) and the two-point correlation function of a DLA grown from 
a ( d  - 1)-dimensional surface have the same power-law behaviour then the fractal 
dimension (Mandelbrot 1982) Do of the former is related to the scaling power D,  of 
the latter by D, = Do- 1. Thus using the known values of Do (Meakin 1983a) we 
expect a value D, ~ 0 . 7 .  

In our simulation we grew DLA from a line on a two-dimensional triangular lattice 
(n). The length L of the starting line (x  axis of the coordinate frame) was 10000. 
The aggregate was grown in the y direction, and periodic boundary conditions were 
assumed in the x direction. We used the following Monte Carlo procedure. A particle 
was released at a random x, at a height y greater than the maximal extent of the 
aggregate in the y direction. The particle then performed a random walk until it either 
arrived at a point adjacent to the aggregate and stuck there, becoming a part of the 
aggregate, or escaped to infinity in the y direction and was eliminated (in the simulation 
this occurred if y >  L ) .  This process was repeated until the mass of the aggregate 
became 150 000, i.e. 15 particles per point of the starting line. The maximal extent of 
the aggregate in the y direction was 244, its RMS height was 84, and the average height 
of a particle in the aggregate was 67. (Distances in the y direction are always given 
in numbers of layers of the TL, i.e. the unit is f i  times smaller than the lattice constant 
which is used to measure distances in the x direction.) Figure 1 depicts part of the 
aggregate grown from a line in this way. The scaling power measured from the density 
profile of the aggregate is D1 = 0.75. This result is consistent with a previously measured 
value (Meakin 1983b) and is close to the expected value of D,. Usually we can expect 
a crossover to one-dimensional behaviour when the size of the aggregate becomes 
comparable with L. However in our simulation we are two orders of magnitude away 
from that crossover. Although in our calculations we use only the part of the aggregate 

Figure 1. A portion of the aggregate grown on a triangular lattice starting from the bottom 
line. Only the first 80 layers are shown. The tick marks are separated by 50 lattice constants. 
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where y s 80, we in fact grew it to a considerably greater height, because the diffusing 
particles penetrate quite deeply into the aggregate and we wanted to ensure that the 
entire region y s 80 had already completed its growth. Even so, 5 %  of the last 30 000 
particles that were released managed to penetrate into that region and increased its 
total mass by about 1 '/o . 

We assume that each occupied site of the TL has three bonds attached to it 
symmetrically (-A), where the length of each bond is 1 / f i  lattice constants of the 
TL. Thus two neighbouring sites are connected not by a straight line but by two bonds 
which meet at a 120" angle. If such bonds had been drawn from all the sites of the 
TL they would form a honeycomb lattice, and the sites of the original TL would occupy 
alternating sites of the honeycomb lattice. In order to calculate the elastic properties 
of the aggregate we apply the same Hamiltonian which was used to represent the 
elastic behaviour of a percolating network (Kantor and Webman 1984). Each bond 
accounts for an elastic energy fk(Sb)', where Sb is the elongation of the bond, while 
a pair of adjacent bonds accounts for an elastic energy $n(S+) ' ,  where 64 is the 
change in the angle between the bonds. These microscopic elastic constants, k and 
m, are related to the bulk and shear moduli of a full lattice, K ~ =  k/2& and p l =  
2d3/ (k + 6 m ) ,  respectively. 

In the fractal regime, the effective elastic moduli have a power law dependence on 
the size of the system, i.e. we expect c -  I-'< and p - l - ' ~ .  The exponents ic and ?, 
were found to coincide in the percolation problem (Bergman 1985), but this need not 
be the case here. An estimate of these exponents can be obtained from the following 
considerations (Kantor and Witten 1984). It can be shown (Kantor and Webman 1984) 
that the force constant of a single very long chain - m / ( B 2 N ) ,  where N is the number 
of bonds in the chain ('chemical' length) and 92 is the radius of gyration of the chain 
in the direction perpendicular to the applied force. (Note that the microscopic constant 
k does not appear.) If the characteristics of the chain have a power law dependence 
on its linear size 1, namely 92 - I" and N- la, then the force constant will scale as 

. Since the elastic modulus is obtained by multiplying the force constant by 
, we find that for a single chain is = d - 2 + 2 a  + S. Clearly the elastic modulus of 

the entire structure is larger than or equal to the elastic modulus of a single branch, 
and therefore is is an upper bound on the critical exponent i of DLA. Since DLA has 
no loops larger than several lattice constants it can be shown (Witten and Kantor 1984) 
that under certain homogeneity assumptions this is not only a bound but the actual 
value of i. Thus for d = 2 we can obtain the values of ic and ?, by substituting the 
correct values of a and S in the relation 7" = 2a + S. Meakin et a1 (1984) have found 
the exponent S to be indistinguishable from 1.  To evaluate i, in this way we must 
find the radius of gyration in they direction of a typical branch (see figure 1) .  Obviously 
this is simply proportional to 1, and therefore cy, = 1 and iw = 3. The situation is less 
clear with respect to i,: because the total length of a branch is apparently proportional 
to 1 ( S  = 11, it is conceivable (and is indeed suggested by figure 1) that some of the 
spanning branches have a radius of gyration in the x direction which grows more 
slowly than 1 (i.e. a, < 1). In that case, 4, is determined by the branches with the 
smallest radii of gyration, rather than by the typical branches, and we would get i, < i,. 
Thus, while we cannot estimate the value of ic from purely geometrical considerations 
we may expect it to be smaller than 3. 

We calculated the effective moduli, c and p ,  for computer simulated strips of 
different widths 1. For given 1 we used the part of the aggregate with 1 s y s 1. Figure 
2 depicts the power law dependence of the moduli on 1. To obtain the results shown 

p u + s )  

12-d 
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0 

Figure 2. Double logarithmic plot showing the dependence of the shear modulus (multiplied 
by 10) CL (W)  and the stretching modulus c (0) on the width of the strip 1. 

there we used such values of the microscopic force constants which produced K~ = 100 
and F~ = 1. In this case k / m  = 1194. A decrease of this ratio by almost two orders of 
magnitude did not cause any significant effect, since the asymptotic slope does not 
depend on k (cf Kantor and Webman 1984). The large value of k / m  was chosen to 
reduce to a minimum the crossover effects. The estimated errors in the value of each 
point on figure 2 increase from 3 %  for small 1 to 10% for large 1. (They are smaller 
than the sizes of the symbols depicting the points.) Both curves have a detectable 
curvature for small widths of the strip. Slopes of these curves are equal to i. We 
estimate i, = 2.6 * 0.2 and ic = 2.2 * 0.2,  where the error bars represent our subjective 
assessment of a possible systematic error due to the short linear range of these graphs. 
A further increase in the accuracy of these values would require the use of considerably 
wider and longer strips, which is at present beyond our computer possibilities. However, 
it seems that the inequality FC < ip is well established. 

In this work we calculated the critical scaling indices of the elastic moduli of DLA, 

and showed that their values depend on the direction of the applied deformation. It 
would be interesting and useful to perform similar three-dimensional calculations. 
However, we can expect to get the same or very close values of i- d in any space 
dimensionality. The appearance of two different i 's  implies the existence of two 
different types of vibrational states with a different dependence of the density of states 
on the frequency. Finally, it would be interesting to know whether the value of ic can 
be determined from purely geometrical considerations. 
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